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Abstract. The restricted primitive model is a complex fluid, compared to simple-fluid models
such as Lennard-Jonesium. This is a result of the strong ionic association between anions and
cations. Some ways in which this ionic association may contribute to the distinctive features of
phase separation observed in RPM-like ionic fluids are noted.

1. Background

Over the past decade, the results of several experimental investigations of ionic liquids
have raised a number of questions that have challenged our understanding of criticality and
phase separation in fluids. Some of these ionic fluids have appeared to exhibit Ising-like
criticality and some have appeared to exhibit ‘classical’ (mean-field) criticality [1]. Among
the latter have been fluids (such as triethyln-hexyl ammonium triethyln-hexyl boride,
N2226B2226, in diphenyl ether) that are regarded as being well-modelled by the restricted
primitive model (RPM) of symmetrically charged hard-sphere anions and cations [2, 3].
These results seemed at odds with our conclusion, set forth in 1992 [4], that the RPM
is Ising-like in its criticality. The disparity suggested that a reexamination of our 1992
arguments was in order. In particular, Fisher [5] questioned the assumption made in [4]
that the charge–charge inverse correlation length0 remains non-zero at criticality (where
the density–density inverse correlation lengthκ is zero). This assumption greatly facilitated
the development of our argument that the RPM is Ising-like (although as noted in section
3 below, there are strong arguments for Ising criticality in the RPM even if one were to
assume0 = 0). It was against this background that the extensions in [6] to our earlier
discussion were developed. We pointed out in [6] that a strong justification for the0 6= 0
assumption lies in the argument of Kosterlitz [7] that for dimensionalityd greater than 2,
a Coulomb gas such as the RPM will be in a conducting state characterized by free ions at
all temperaturesT above zero. One expects on very general grounds that the presence of
free ions is associated with charge screening, i.e.,0 6= 0. If this is accepted, the condition
0 = 0 implies an insulating state with no free ions in the Kosterlitz sense. We refer to
the appendix of [6] for further discussion of this issue; our conclusion was that there were
as yet no convincing arguments against our original position that0 6= 0 or that the RPM
should be expected to be in the Ising universality class.

In the meantime, the experimental picture began to change substantially, in part as
a result of extremely precise measurements by Narayanan and Pitzer [8] on a family of
ionic fluids that included RPM-like members. In general even in systems that have Ising
criticality (including the Ising model itself) one sees thermodynamic behaviour that cannot
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be differentiated from that of systems with mean-field criticality when one is sufficiently
far from the critical point. But the RPM-like fluids examined by Narayanan and Pitzer
show a ‘delayed’ crossover from mean-field-like behaviour to Ising criticality very much
closer to the critical temperatureTc (in units of the dimensionless temperature variable
t = (T − Tc)/Tc) and the critical densityρc (in units of M = |(ρ − ρc)/ρc|) than one
finds in the nearest-neighbour lattice gas or in a simple liquid like argon. In this light, the
earlier work by Singh and Pitzer [2] and by Zhanget al [3] on N2226B2226 that seemed fully
consistent with mean-field behaviour should perhaps be interpreted instead as showing just
such a delayed crossover rather than being more simply regarded as evidence of true mean-
field behaviour. (In fact, the delayed-crossover possibility was already raised in the original
data analysis in [2].) However, new experimental work on the turbidity of N2226B2226 by
Wiegandet al [9] appears to be inconsistent with the earlier results in [3], with preliminary
measurements revealing no deviations from Ising-like behaviour, thus bringing the status of
the earlier N2226B2226 data into question. In any case, although the experimental consensus
that is emerging is clearly still in flux, one finds that there is now substantial experimental
evidence that fluids that can be faithfully modelled by the RPM are in the Ising class in
their critical behaviour. But if this is the case, the central question that emerges is: why
is the crossover behaviour in such systems so often different from that found in argon?
It is a question that must be answered against a background that includes some recent
RPM simulation results [10] that probe not only the critical-point location but the type of
criticality as well. These simulation results are consistent with Ising criticality. Moreover,
they do not reveal any sign of the ‘delayed crossover’ found in the experimental results
described above. As will be seen, the magnitude of the delayed-crossover effect discussed
in the next section is non-universal and system dependent; it could well be non-negligible
in some real ionic fluids but negligible in the RPM and in other ionic fluids. (On the other
hand, the effect of the dipole–dipole interaction discussed in section 3 can be expected to
be of more universal relevance. Although it too is system dependent, its importance hinges
on the simple observation that as long as the free-ion density is very small (or zero) at the
critical point, one expects the criticality to be very much like that of a pure dipolar fluid.)
The absence of any delayed-crossover effect in the simulation of [10] is no surprise, in
the light of the fact that the simulation detects almost no free ions near criticality, while
the delayed-crossover mechanism suggested in section 2 involves a prefactor of orderρ2

C ,
whereρC is free-ion density.

2. Understanding the crossover behaviour

We believe that a possible explanation of the crossover behaviour lies in the presence of
both free ions and associated ion clusters, such as ion pairs, in the critical region. The
latter will behave much like dipolar dumbbells, so that there will be a charge-dipole term
in the ion/ion-pair interaction potential. This will contribute a screened charge-dipole term
WCD(r) to the ion/ion-pair potential of mean force, which will in turn contribute a term
of the form 〈W 2

CD(r)〉 to the determinantCρρ(r) of the density–density direct-correlation
matrix. Here〈 〉 represents an average over the dipole orientations. The full functional
dependence of〈W 2

CD(r)〉 is not known, but its large-r form in the Debye–Ḧuckel regime
of low ion density provides useful information concerning the thermodynamic effect of its
presence. As discussed in [6], Høye and Stell have found [11] that in this regime it has the
form

(1 + 0r)2e−20r/r4 (2.1)



Phase separation in ionic fluids 9331

times a spatially independent prefactor(AρCβq)2 whereρC is free-ion density,q is ion
charge magnitude,β = 1/kT , and A depends upon the properties of the dipolar solvent
formed by the ion pairs through the variablesβ, ρD, andµ, whereρD is ion-pair density
andµ is ion-pair dipole moment. To lowest order,A is linear inρDµ. The thermodynamic
behaviour of the system asκ → 0 will depend upon the form ofCρρ(r) for κr < 1. In
the critical region we expect0σ < 1 whereσ is the ion diameter, and probably even
0σ � 1, because of substantial ion clustering into pairs and other larger neutral clusters
that will deplete the free-ion population [12, 13]. Whenκσ � 1 and0σ � 1 with κ < 0,
the term of (2.1) will contribute to mean-field-like behaviour, since forκr < 1 it will
be indistinguishable from an unscreened 1/r4 term, which would give rise to mean-field
criticality. Very close to criticality, however, whenκ becomes appreciably smaller than0,
a crossover occurs because appreciable exponential decay of theCρρ(r)-contribution now
occurs over the rangeκr � 1, revealing the (relatively) short-range nature of the term.

The thermodynamic details of the crossover are particularly subtle, because asκ → 0,
0 is probably itself decreasing to a critical value0c as a result of increasing ionic clustering.
This meansρC is also probably decreasing. However this also means thatρD is increasing.
Thus the prefactor(AρCβq)2 may well be changing (probably decreasing) and the inverse
range, 20, significantly decreasing, asκ → 0: moreover, the prefactor is non-universal—it
will depend upon the densityρD of the dipolar solvent in which the free ions are the solute
(and also theε of that solvent, throughA). In the RPM, this solvent consistsonly of the
clusters of ions formed by ionic association, but in real ionic fluids it willalso include the
solvent in which the ionic solute is dissolved.

The crossover that occurs whenκ becomes smaller than0 has no counterpart in the Ising
model or argon, and we believe it may be significant in fluids in which there is appreciable
ionic clustering. One way to study it is to use the Ginzburg criterion. Given a mean-field
treatment of correlation, the criterion enables one to establish the values of the variablest

and M below which the mean-field treatment ceases to be reliable as one approaches the
critical point. These are the Ginzburg numberstG andMG. The criterion has already been
applied by Leote de Carvalho and Evans [14], by Fisher and Lee [15] and by Yeh and
Stell [16] to a number of mean-field theories of RPM behaviour. In all cases, the Ginzburg
numbers proved to be comparable to (or actually larger than) those for standard mean-field
treatments of simple non-ionic fluids. In short, these studies have as yet not shed light on
the delayed-crossover behaviour found in the experimental results cited above. However
none of the versions of mean-field theory so studied have included either the ion/ion-pair
term given by (2.1) or the effect of clustering beyond ion pairing as part of their description.
The latter would presumably tend to lower bothρC and 0 as one approaches the critical
point and possibly influence the effect of the ion/ion-pair term in a significant way.

3. The role of ion-pair/ion-pair interactions

The effect of the ion-pair/ion-pair term also appears to be of great importance in determining
the critical behaviour of RPM-like fluids, and we believe this issue also deserves further
study. One of its implications is in connection with the conclusion we drew in section 2.2
of [6] that in the unsymmetric PM (UPM) the charge–charge inverse correlation length0

may well be constrained to vanish at criticality along withκ, the density–density inverse
correlation length. The formally exact analysis that leads to this conclusion revealed a
significant difference in the density–density structure factor when one compares the RPM
and the UPM, with the UPM structure factor of non-Ising form. On the other hand, if0 does
go to zero at criticality in the UPM, one can reasonably argue that in three dimensions the
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resulting critical system will look very much like a system of ions that have been completely
associated into neutral dipolar clusters. (For example, if the anion–cation asymmetry is one
of size rather than charge number, the critical system will look much like a collection of
heteronuclear dipolar dumbbells.) But we expect such a system of dipolar particles to be
in the Ising universality class, which is what we also expect of the RPM despite the formal
difference in density–density structure factors. In the case of the RPM, where we expect
0 non-zero but relatively small, the same line of reasoning leads us to conclude that at
criticality, the system will look very much like a system of homonuclear dipolar dumbbells
plus a relatively small concentration of free ions. Even if we were wrong to assume that
0 6= 0 at criticality in the RPM (so that0 is instead zero, and we have only neutral clusters
such as the dipolar dumbbells), we would again expect Ising critical behaviour from such a
system of dipolar particles. Our conclusion is that the presence of a significant population of
ion pairs at criticality in both the RPM and UPM gives rise to similarity in critical behaviour
that would not necessarily be found in the absence of ionic association.

To explore these ideas in a more precise and quantitatively accessible form, we advocate
using the formalism developed by Høye and Stell to investigate solutions of ions in dipolar
solvents. The formalism is quite general and was used by us to investigate the screening
found in the ion/ion, ion/dipolar-particle, and dipolar-particle/dipolar-particle correlation
functions [17]. We subsequently used it [18] to extend the Landau–Ginzburg analysis of
Nabutovskiiet al [19] in investigating the effect of adding ionic solutes to a dipolar solvent
in its critical region. In the problem we are discussing here, the dipolar species is formed
through ionic association rather than independently existing as a molecular species, but
when adjusted for this feature (which requires the use here of a mass-action law that does
not enter [17] or [18]) the existing formalism is very well suited to the problem at hand. In
fact, the expression given by (2.1) for the charge-dipole part of the ion/ion-pair contribution
to the direct-correlation matrix was first obtained by Høye and Stell in the context of the
ion/dipole-solvent mixture [11].

The dominant role of ionic pairing and the resulting ion-pair/ion-pair interaction in
determining the quantitative features of the liquid–gas coexistence curve in the RPM
appears to have received striking confirmation from recent simulation results of Shelley
and Patey [20]. They compared the coexistence curves of the RPM with that of a system
of homonuclear dipolar dumbbell molecules, each consisting of a hard-sphere anion and a
hard-sphere cation bearing point charges at their centres, with each ion pair held in rigid
tangential contact, so that the distance between the chargesq and−q is a sphere diameter
σ . (Shelley and Patey refer to these dumbbells with extended point dipoles as charged
dumbbells.) They found that the two coexistence curves were very similar in shape and in
the location of their critical points. On the other hand, they found the coexistence curve of
a system of ideal-dipolar dumbbells (hard-sphere dumbbells, each bearing an ideal dipole at
the tangency point of hard-sphere contact) to be very different. This result suggests that we
incorporate into our treatment of the RPM the new approximation procedures that we have
been developing to treat chemically associating liquids and interaction-site liquids. One
such application we have made of these procedures (to highly asymmetric electrolytes) has
proved very successful [21].

4. The self-consistent Ornstein–Zernike approach (SCOZA)

Some time ago, Høye and Stell [22] suggested using self-consistency between the
compressibility relation and the relation for the internal energy, both of which involve
the pair correlation functionh(r), to obtain a closure for the Ornstein–Zernike integral
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equation forh(r) that one might expect to accurately predict thermodynamics around the
critical point as well as far from it. For the three-dimensional nearest-neighbour lattice gas,
for which precise estimates of exact results are available, Dickman and Stell [23] have for
the first time comprehensively solved the non-linear partial differential equation that arises
from the self-consistency condition. They find that the procedure yields remarkably accurate
predictions (less than 3% error over most of the temperature range) for the correlation length,
compressibility, specific heat, and the coexistence curve. Critical temperatures agree to
within 0.2% (and other critical properties to within 1 to 2%) of the best numerical estimates.
We have begun the development of versions of SCOZA that are appropriate to the RPM.
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Schr̈oer W, Wiegand S, Kleemeier M K and Weing̈artner H 1994J. Phys.: Condens. Matter6 A157

[2] Singh R R and Pitzer K S 1990J. Chem. Phys.92 6775
[3] Zhang K C, Briggs M E, Gammon R W and Levelt Sengers J M H 1992J. Chem. Phys.97 8692
[4] Stell G 1992Phys. Rev.A 45 7628
[5] Fisher M E 1994J. Stat. Phys.75 1
[6] Stell G 1995J. Stat. Phys.78 197
[7] Kosterlitz J M 1977J. Phys. Chem.10 3753
[8] Narayanan G T and Pitzer K S 1994J. Phys. Chem.98 9170; 1994Phys. Rev. Lett.73 3002; 1995J. Chem.

Phys.102 8118
[9] Wiegand S, Levelt Sengers J M H,Zhang K J, Briggs M E and Gammon R W 1996J. Chem. Phys.at press

[10] Caillol J M, Levesque D and Weis J J 1996Preprint
[11] See equations (3.1), (3.2) and the accompanying text in section 3 of [6].
[12] Bresma F, Lomba E, Weis J J and Abascal J L F 1995Phys. Rev.E 51 289
[13] Caillol J M and Weis J J 1995J. Chem. Phys.102 7610
[14] Leote de Carvalho R J F andEvans R 1995J. Phys.: Condens. Matter7 L575
[15] Fisher M E and Lee B P 1996 at press
[16] Yeh S and Stell G 1996 to appear
[17] Høye J S and Stell G 1977J. Chem. Phys.67 1776; 1978J. Chem. Phys.68 4145; 1979J. Chem. Phys.71

1985; 1978Faraday Discuss. Chem. Soc. No 64: Ion–Ion and Ion–Solvent Interactions16
[18] Høye J S and Stell G 1990J. Phys. Chem.94 7899
[19] Nabutovskii V M, Nemov N A and Peisakhovich Yu G 1980Sov. Phys.–JETP52 1111; 1980Zh. Eksp. Teor.

Fiz. 79 2196; 1980Phys. Lett.79A 98; 1985Mol. Phys.54 979
[20] Shelley J C and Patey G N 1995J. Chem. Phys.103 8299
[21] Kalyuzhnyi Yu V, Vlachy V, Holovko M F and Stell G 1995J. Chem. Phys.102 5770
[22] Høye J S and Stell G 1984Mol. Phys.52 1071; 1985Int. J. Thermophys.6 561
[23] Dickman R and Stell G 1996Phys. Rev. Lett.77 996


